SIFAT ASIMTOTIK ESTIMATOR NADARAYA-WATSON DENGAN KERNEL ORDE TAK HINGGA

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nadaraya-Watson estimator for sensor fusion problems

The classical Nadaraya-Watson estimator is shown to solve a generic sensor fusion problem where the underlying sensor error densities are not known but a sample is available. By employing Haar kernels this estimator is shown to yield finite sample guarantees and also to be efficiently computable. TWO simulation examples, and a robotics example involving the detection of a door using arrays of u...

متن کامل

Nadaraya-Watson Estimator for Sensor Fusion

In a system of N sensors, the sensor S j , j = 1; 2 : : : ; N , outputs Y (j) 2 0; 1], according to an unknown probability density p j (Y

متن کامل

PAC Learning Using Nadaraya-Watson Estimator Based on Orthonormal Systems

Regression or function classes of Euclidean type with compact support and certain smoothness properties are shown to be PAC learnable by the Nadaraya-Watson estimator based on complete orthonormal systems. While requiring more smoothness properties than typical PAC formulations, this estimator is computationally efficient, easy to implement, and known to perform well in a number of practical ap...

متن کامل

Sensor validation and fusion using the Nadaraya-Watson statistical estimator

The paper describes a novel integrated sensor validation and fusion scheme based on the NadarayaWatson statistical estimator. The basis of the sensor validation scheme is that observations used to implement the estimator are obtained from valid sensor readings. Pattern matching techniques are used to relate a measurement vector that is not consistent with the training data to the closest a-prio...

متن کامل

Generative Local Metric Learning for Nadaraya-Watson Kernel Estimation

• For Gaussian data, the regression needs to calculate kernel with only two-dimensional information regardless of the original dimensionality, and it always obtains mean square error (MSE) close to zero with finite samples. • Previously a well-known extension of the NW estimator, locally linear regression (LLR), is known to alleviate the asymptotic bias. The proposed metric acts differently fro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: AdMathEdu : Jurnal Ilmiah Pendidikan Matematika, Ilmu Matematika dan Matematika Terapan

سال: 2016

ISSN: 2088-687X

DOI: 10.12928/admathedu.v5i1.4781